

Semiconductor Engineering Workforce Challenges, Industry and Academia!

Rob Pearson – RIT Microelectronic Engineering

Dave Gross – Siemens Digital Industries Software

The "Perfect Factory"

 Consists of one man and one dog – the man to feed the dog and the dog to keep the man from touching anything and screwing it up.

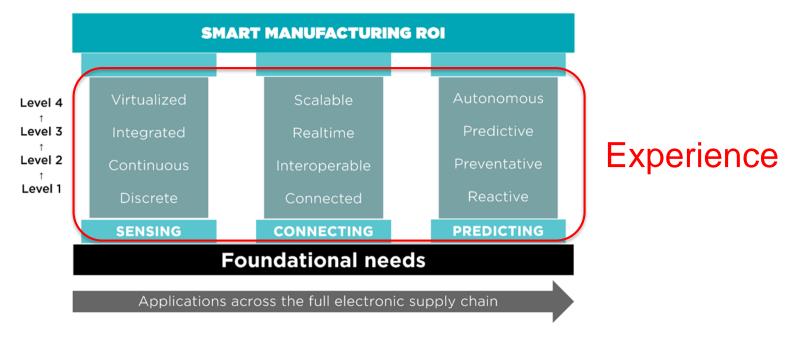
- Warren Bennis

... in the future a typical factory will host three workers: a man, a computer and a dog. The computer will do all the work. The man will feed the dog. And the dog's job? To bite the man - if he touches the computer.

— Todd G. Buchholz —

AZ QUOTES

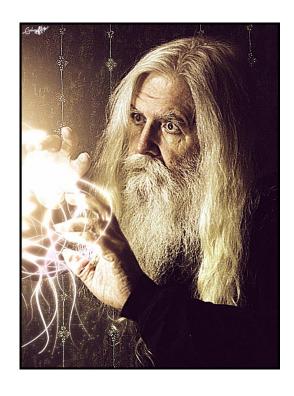
If the dog is a robot we won't need a man to feed it!

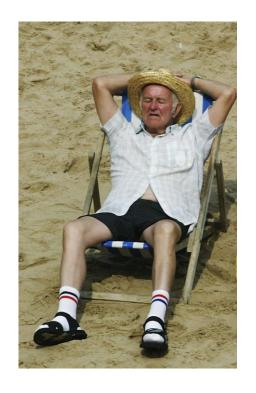


Industry 4.0 Readiness Assessment Model

Assessing smart manufacturing ROI by evaluating a facility's sensing, connecting predicting capabilities.

https://semi.org/en/industry-groups/smart-manufacturing/IRAM Andrew Seward (TEL) and David Gross (Siemens)

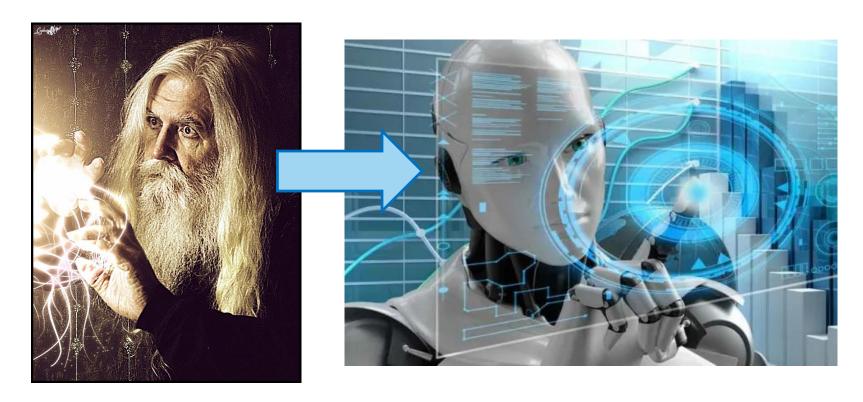




Experienced Workforce!

Plasma Etch Wizard

Retired on the Beach!

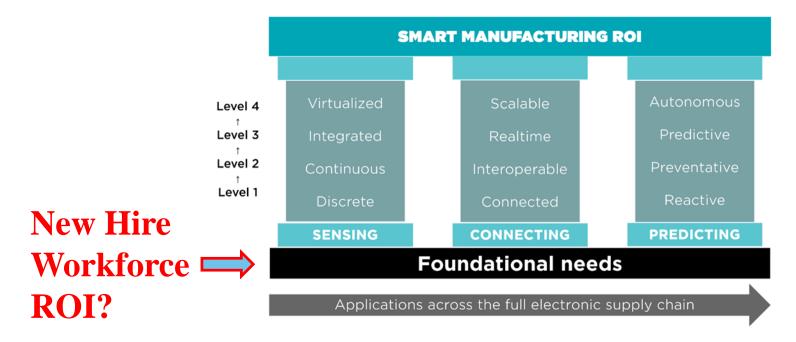


Is Artificial Intelligence Going to Save You?

You need real intelligence somewhere

And Your Competitor is Raiding Talent from You!

- You raid from ther
- Who is winning?



Where does Workforce Fit in?

You need to pay attention to your workforce Supply Chain!

Upscale for everyone and the supply chain! Joint & Collaborative

Semiconductor Engineering (BS/MS) Workforce Issues

- What does the pipeline look like?
 - If you can't get more students (parents) interested you have already lost!
- Demographics and K-12 outreach
 - Less students are going to college
 - Less students are studying engineering
 - Competition from other high-paying tech jobs
 - Increased Diversity is desired
 - -Solving the workforce issue with overwhelming numbers is not going to happen
- University Courses, Majors, Degree Programs
 - -Tell K-12 students where to go to best prepare for this career

You can't Open a Factory in the US!

- The Weather-Tech ads on TV
- Visualize What is Made Here!
- Is this a Car Plant?

 Not too exciting but at least you see some cars

• Is this a Chip Plant?

How do you perceive Craftsmanship and Quality?

Visual Quality Metrics & Craftsmanship in other industries!

Customer can see it!

Put a number on it!

Seam tolerance 2mm +/- 0.2 mm

Yield Metric

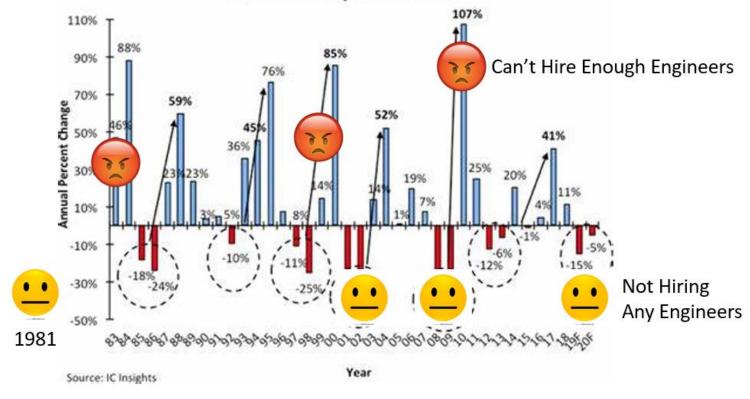
Can you get a student excited about making what you can't see?

How does a Semiconductor Engineer Take Pride in Their Craftsmanship?

Last Week's Yield was 91.2%

This Week's Yield was 92.8%

How do we sell this as a Career?



Start-Stop-Start!

- One year you can't get enough
- Next year, no hires
- Last In First Out

Industry Cycles

1983-2020F Semiconductor Industry Capital Spending Growth History and Forecast

Industry View of Academia on the Workforce Issue

Semiconductor Company Purchase Order

Obtain From: **Top 10 Universities**

Quantity Entry Level Engineers: 1,000

Desired Billable Cost: FREE

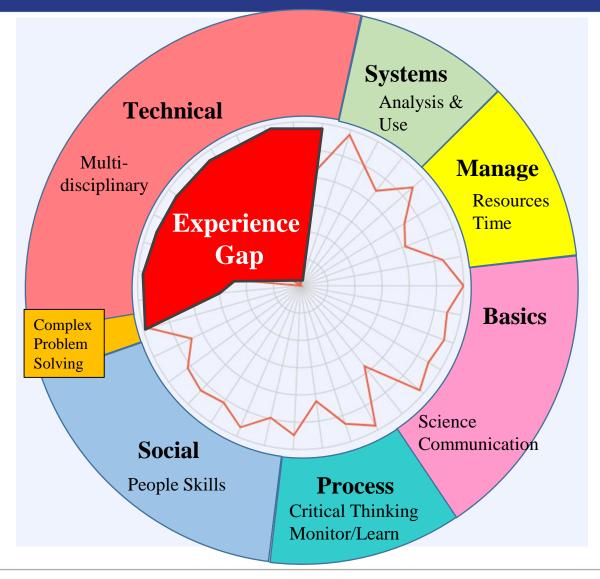
Delivery Date: 4 to 5 years*

* Dependent on Supply of Interested High School Students

The Academic View of Industry Considering the Workforce Supply Issue!

So New Hires!

What's a Silicone Wafer?



Hire a good new engineer who knows nothing about Semiconductors!

How much does it cost you to bring them "up-to-speed"?

How much do their mistakes cost you during this time?

Educating the future Engineer at College

- What can colleges teach? At the undergrad and grad levels?
 - -Basic Engineering
 - One fabrication class
 - -Comprehensive curriculum
 - -Research integration

Industry and the New Hire

 Current Engineer needs some updating (internal training, online?)

Engineer - Furniture Analogy

The perfect new hire with experience!

What you might be willing to settle for

What you did settle for

Industry

College

High School student

Industry Pays to Finish the Engineer

- Good for the student
 - Gets a good salary while learning how to do the job
 - How long does that take?
- Good or Bad for Universities
 - Good, we just teach the basics and the rest is on industry
 - Bad, if we teach more but we don't get anything for doing it.
- Good or Bad for Industry
 - Eventually you get exactly what you want
 - How long and how much does it cost you to get there?

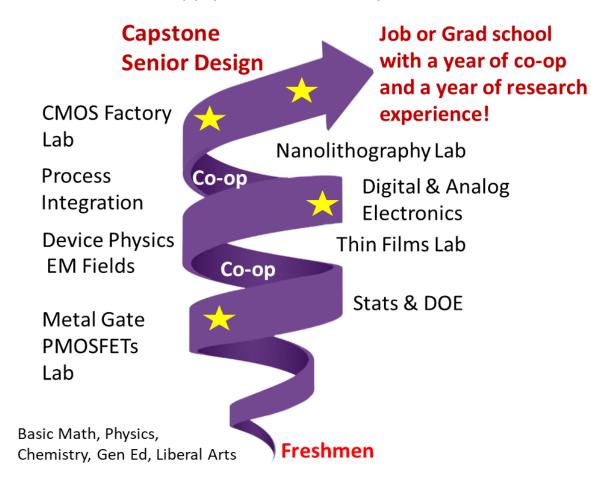
Finish the Engineer You Hire – 1-2 more years in your fab (you pay)

Mismatch

Trained to fit to R&D funding

Far too many employers report a mismatch between what engineering students learn in school, and what graduates need on day one of the job. Building a more heterogeneous, job-ready labor force demands that higher education, private industry and the federal government coalesce and act at an unprecedented level and pace.

How do we solve this problem?



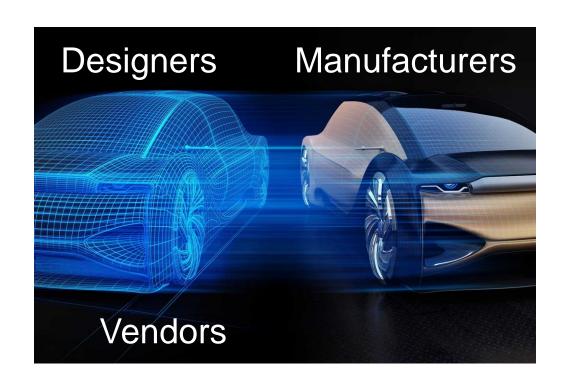
1980 – Japanese Challenge Problem Solved 40 Years Ago!

- RIT Microelectronic Engineering Curriculum
- Engineering Fundamentals
- Tiered Academic/Lab Experience
- Experiential Learning Component
- Targeted Multi-course curriculum
- Senior Capstone
- Manufacturing thrust

The Upward Learning Spiral! Learn, Apply, Evaluate and Repeat

With over 50 Good University Cleanrooms across the country, why has the workforce issue not gone away?

- University Cleanrooms are research funded not tuition driven
 - -Limited Chip Manufacturing Research Funds
 - Research funding "stays away" from what mainstream semiconductor manufacturers are investigating
- Most Universities can't keep up with tool maintenance and upgrades
- Cleanrooms are expensive to operate
- We can't sell our students



It will take efforts at hundreds of Universities!

- How we will get more universities to accept this teaching challenge?
- Digital Twin of a small volume fab (research lab)
- Teach Simulated Manufacturing at the University Level
- Simulated CMOS Student Factory!

Student Pays to become an Engineer

- Cost to student
 - Private vs Public tuition
 - Scholarships, loans, CC route, coop employment
 - Good paying job upon graduation
 - Is this enough of a recruiting draw?
- Good for Universities
 - But is it tuition or research dollars they want?
 - How good of an engineer are they producing?

- · Great for Industry they don't have to pay anything
 - But, you can't complain about the number or quality of the people you hire.

University Funds Engineering Students

- Good for the student
 - Get good students
 - Increase diversity
 - Can bribery alone fix the numbers?

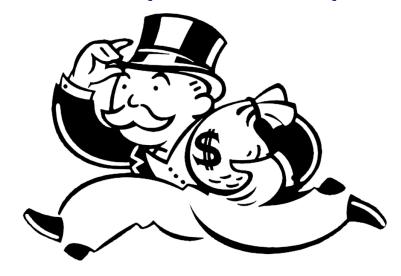
- Model for PhD Researchers (out of research dollars)
- No funding for BS Manufacturing Engineers.
- Great for Industry they don't have to pay anything
 - But, you can't complain about the number or quality of the people you hire.

What Needs Funded?

Teaching Lab Costs

Are Your State Taxes the Answer?

- What state?
 - -NY students to Ohio?
 - -Ohio to AZ, etc.
 - -Indiana?
- How is that money spent (scholarships?)
- Is there any Industry oversight or feedback?
 - –Are they solving the problem?



Mr. Chips Act Pays

Pays who?

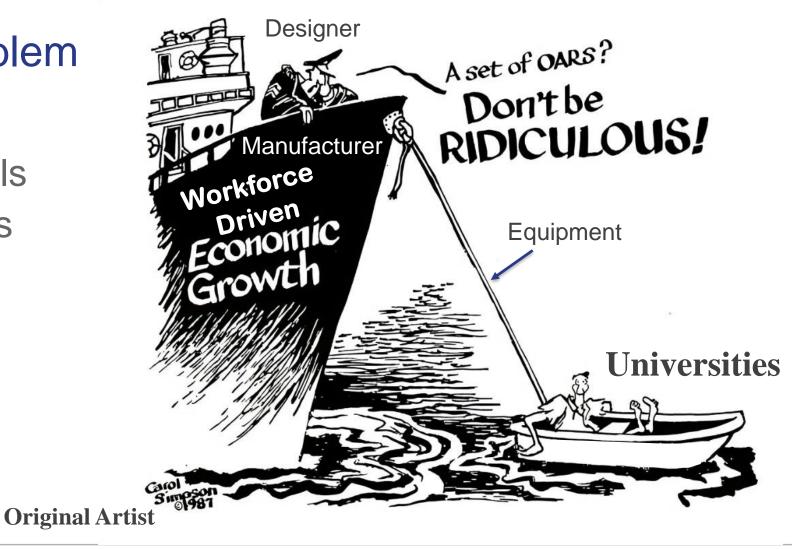
Companies

Students

Universities

How did SEMATECH and the G450 Efforts end up?

Which horses are we betting on?



The Workforce Problem

- Universities
- Equipment/Materials
- Chip Manufacturers
- Fabless
- Designers

